1.4 B simplifying square roots

1 / 20
volgende
Slide 1: Tekstslide
WiskundeMiddelbare schoolhavo, vwoLeerjaar 2

In deze les zitten 20 slides, met interactieve quizzen en tekstslides.

time-iconLesduur is: 50 min

Onderdelen in deze les

Slide 1 - Tekstslide

Slide 2 - Tekstslide

Today
You  use the rule for multiplying
roots to simplify expressions.

You can rewrite fractions to bring
square roots form the denominator to
the numerator.


Slide 3 - Tekstslide

How are you today?
šŸ˜’šŸ™šŸ˜šŸ™‚šŸ˜ƒ

Slide 4 - Poll

The rule
āˆšā€‹aā€‹ā€‹ā€‹ā‹…āˆšā€‹b​​​=āˆšā€‹aā‹…b​​​

Slide 5 - Tekstslide

Calculate
You can use a capital v to indicate a square root here.
āˆšā€‹aā€‹ā€‹ā€‹ā‹…āˆšā€‹b​​​=āˆšā€‹aā‹…b​​​
āˆšā€‹12ā€‹ā€‹ā€‹ā‹…āˆšā€‹3​​​

Slide 6 - Open vraag

Calculate
You can use a capital v to indicate a square root here.
āˆšā€‹aā€‹ā€‹ā€‹ā‹…āˆšā€‹b​​​=āˆšā€‹aā‹…b​​​
āˆšā€‹15ā€‹ā€‹ā€‹ā‹…āˆšā€‹3ā€‹ā€‹ā€‹ā‹…āˆšā€‹5​​​

Slide 7 - Open vraag

Calculate
You can use a capital v to indicate a square root here.
āˆšā€‹aā€‹ā€‹ā€‹ā‹…āˆšā€‹b​​​=āˆšā€‹aā‹…b​​​
(āˆšā€‹3​​​)​2​​

Slide 8 - Open vraag

Simplifying roots by factorising
Let's observe
āˆšā€‹75​​​

Slide 9 - Tekstslide

Simplifying roots by factorising
Let's observe

also
āˆšā€‹75​​​
75=5ā‹…15
75=3ā‹…25

Slide 10 - Tekstslide

Simplifying roots by factorising
Let's observe

so 
is this progress?
āˆšā€‹75​​​
75=5ā‹…15
āˆšā€‹75​​​=āˆšā€‹5ā€‹ā€‹ā€‹ā‹…āˆšā€‹15​​​

Slide 11 - Tekstslide

Simplifying roots by factorising
Let's observe

so 
Is this progress? Why?
āˆšā€‹75​​​
75=3ā‹…25
āˆšā€‹75​​​=āˆšā€‹3ā€‹ā€‹ā€‹ā‹…āˆšā€‹25​​​

Slide 12 - Tekstslide

Simplifying roots by factorising
Let's observe

so 
Is this progress? Why?

Yes, because 
āˆšā€‹75​​​
75=3ā‹…25
āˆšā€‹75​​​=āˆšā€‹3ā€‹ā€‹ā€‹ā‹…āˆšā€‹25​​​
āˆšā€‹3ā€‹ā€‹ā€‹ā‹…āˆšā€‹25​​​=āˆšā€‹3​​​⋅5=5āˆšā€‹3​​​

Slide 13 - Tekstslide

Simplify
You can use a capital v to indicate a square root here.
āˆšā€‹aā€‹ā€‹ā€‹ā‹…āˆšā€‹b​​​=āˆšā€‹aā‹…b​​​
āˆšā€‹200​​​

Slide 14 - Open vraag

Simplifying fractions by factorising
Let's observe

As a rule, we don't like to have roots in the denominator of our fractions. Luckily, there's a way to move the square root.
ā€‹āˆšā€‹2​​​​​1​​

Slide 15 - Tekstslide

Simplifying fractions by factorising
ā€‹āˆšā€‹2​​​​​1​​⋅1

Slide 16 - Tekstslide

Simplifying fractions by factorising
ā€‹āˆšā€‹2​​​​​1​​⋅1=
ā€‹āˆšā€‹2​​​​​1ā€‹ā€‹ā‹…ā€‹āˆšā€‹2ā€‹ā€‹ā€‹ā€‹ā€‹āˆšā€‹2​​​​​=

Slide 17 - Tekstslide

Simplifying fractions by factorising
ā€‹āˆšā€‹2​​​​​1​​⋅1=
ā€‹āˆšā€‹2​​​​​1ā€‹ā€‹ā‹…ā€‹āˆšā€‹2ā€‹ā€‹ā€‹ā€‹ā€‹āˆšā€‹2​​​​​=
ā€‹āˆšā€‹2​​​​​1ā€‹ā€‹ā‹…ā€‹āˆšā€‹2ā€‹ā€‹ā€‹ā€‹ā€‹āˆšā€‹2​​​​​=ā€‹āˆšā€‹2ā€‹ā€‹ā€‹ā‹…āˆšā€‹2ā€‹ā€‹ā€‹ā€‹ā€‹āˆšā€‹2​​​​​=ā€‹āˆšā€‹4ā€‹ā€‹ā€‹ā€‹ā€‹āˆšā€‹2​​​​​

Slide 18 - Tekstslide

Simplifying fractions by factorising
ā€‹āˆšā€‹2​​​​​1​​⋅1=
ā€‹āˆšā€‹2​​​​​1ā€‹ā€‹ā‹…ā€‹āˆšā€‹2ā€‹ā€‹ā€‹ā€‹ā€‹āˆšā€‹2​​​​​=
ā€‹āˆšā€‹2​​​​​1ā€‹ā€‹ā‹…ā€‹āˆšā€‹2ā€‹ā€‹ā€‹ā€‹ā€‹āˆšā€‹2​​​​​=ā€‹āˆšā€‹2ā€‹ā€‹ā€‹ā‹…āˆšā€‹2ā€‹ā€‹ā€‹ā€‹ā€‹āˆšā€‹2​​​​​=ā€‹āˆšā€‹4ā€‹ā€‹ā€‹ā€‹ā€‹āˆšā€‹2​​​​​=​2ā€‹ā€‹āˆšā€‹2​​​​​(=​2​​1ā€‹ā€‹āˆšā€‹2​​​)

Slide 19 - Tekstslide

Do the things

Slide 20 - Tekstslide