Wat is LessonUp
Zoeken
Kanalen
aiToolsTab
Inloggen
Registreren
‹
Terug naar zoeken
H7.4
Gegeven zijn de cirkel c: x
2
+ y
2
- 10x - 6y + 18 = 0 en de punten P(1, 6) en Q(6, -2).
Van c is het middelpunt M(5, 3) en de straal r = 4.
a Toon dit aan.
1 / 25
volgende
Slide 1:
Tekstslide
Wiskunde
Middelbare school
havo
Leerjaar 4
In deze les zitten
25 slides
, met
tekstslides
.
Lesduur is:
50 min
Start les
Bewaar
Deel
Printen
Onderdelen in deze les
Gegeven zijn de cirkel c: x
2
+ y
2
- 10x - 6y + 18 = 0 en de punten P(1, 6) en Q(6, -2).
Van c is het middelpunt M(5, 3) en de straal r = 4.
a Toon dit aan.
Slide 1 - Tekstslide
Gegeven zijn de cirkel c: x
2
+ y
2
- 10x - 6y + 18 = 0 en de punten P(1, 6) en Q(6, -2).
Van c is het middelpunt M(5, 3) en de straal r = 4.
P en Q liggen buiten c.
b. Toon dit aan.
Slide 2 - Tekstslide
Gegeven zijn de cirkel c: x
2
+ y
2
- 10x - 6y + 18 = 0 en de punten P(1, 6) en Q(6, -2).
Van c is het middelpunt M(5, 3) en de straal r = 4.
P en Q liggen buiten c.
c. Is de afstand van P tot c groter of kleiner dan de afstand van Q tot c? Licht toe.
Slide 3 - Tekstslide
succescriteria
d(A, B) = wortel( (x
B
- x
A
)
2
+ (y
B
- y
A
)
2
)
binnen, buiten en op de cirkel
Slide 4 - Tekstslide
De afstand van een punt tot een cirkel
De afstand van een punt tot een kromme is de lengte van de kortste verbindingslijnstuk tussen het punt en de kromme.
De afstand van een punt tot een cirkel c met middelpunt M en straal r
Voor punt A binnen c geldt d(A, c) = r - d(A, M)
Voor punt B buiten c geldt d(B, c) = d(B, M) - r
Slide 5 - Tekstslide
Gegeven zijn de cirkel c: x
2
+ y
2
- 6x - 4y + 3 = 0 en de punten A(2, 1), B(-1, 5) en C(9, 4).
Bereken exact.
d(A, c)
d(B, c)
d(C, c)
Slide 6 - Tekstslide
Gegeven zijn de cirkel c: (x - 2)
2
+ (y - 1)
2
= 10 en het punt A(5,2) op c. De lijn k raakt c in A. Zie figuur 7.25.
a. Hoe kun je controleren dat A op c ligt?
Slide 7 - Tekstslide
Gegeven zijn de cirkel c: (x - 2)
2
+ (y - 1)
2
= 10 en het punt A(5,2) op c. De lijn k raakt c in A. Zie figuur 7.25.
De lijn l gaat door M en A.
b. Bereken de richtingscoëfficiënt rc
l
van l
Slide 8 - Tekstslide
Gegeven zijn de cirkel c: (x - 2)
2
+ (y - 1)
2
= 10 en het punt A(5,2) op c. De lijn k raakt c in A. Zie figuur 7.25.
De lijn l gaat door M en A.
De lijn k staat loodrecht op l.
c. Stel een vergelijking van k op.
Slide 9 - Tekstslide
succescriteria
rc = Δy/Δx
k ⊥ l, rc
k
. rc
l
= -1
lijn l: y = ax + b opstellen
Slide 10 - Tekstslide
Raaklijnen aan cirkels
Werkschema: opstellen van een vergelijking van een raaklijn k aan een cirkel c met middelpunt M in een gegeven punt A op c.
Bereken de richtingscoëfficiënt rc
l
van de lijn l door M en A.
Gebruik k ⊥ l, dus rc
k
. rc
l
= -1, om de richtingscoëfficiënt rc
k
van k te berekenen.
Gebruik rc
k
en de coördinaten van A om een vergelijking van k op te stellen.
Slide 11 - Tekstslide
Gegeven is de cirkel c: x
2
+ y
2
- 6x - 2y + 5 = 0. De lijn k raakt c in het punt A met x
A
= 2 en y
A
> 0.
Stel van k een vergelijking op.
Slide 12 - Tekstslide
Gegeven zijn de cirkel c: x
2
+ y
2
-10x + 15 = 0 en de lijn k: y = x - 1.
Door y = x - 1 te substitueren in de cirkelvergelijking krijg je de vergelijking x
2
- 6x + 8 =0.
a. Toon dit aan.
Slide 13 - Tekstslide
Gegeven zijn de cirkel c: x
2
+ y
2
-10x + 15 = 0 en de lijn k: y = x - 1.
b. Los de vergelijking x
2
- 6x + 8 = 0 op en bereken de coördinaten van de snijpunten A en B van k en c
Slide 14 - Tekstslide
succescriteria
abc-formule
discriminant
substitueren
Slide 15 - Tekstslide
Snijpunten van lijnen met cirkels
c: x
2
+ y
2
- 10x + 15 = 0
k: y = x -1 met c heeft 2 snijpunten
c met l: y = x + 1,
heeft geen snijpunten
c met m: y = 3x - 5,
heeft één snijpunt
Slide 16 - Tekstslide
Snijpunten van lijnen met cirkels
De ligging van de lijn y = ax + b ten opzichte van een cirkel
Ontstaat na substitutie van y=ax+b in de cirkelvergelijking een tweedegraadsvergelijking waarvan de discriminant
groter is dan nul, dan zijn er twee snijpunten
gelijk is aan nul, dan raakt de lijn de cirkel
kleiner is dan nul, dan zijn er geen snijpunten.
Slide 17 - Tekstslide
Voorbeeld
Gegeven is de cirkel c: (x - 5)
2
+ (y - 1)
2
= 17.
Bereken voor welke waarden van q de lijn 4x - y = q de cirkel raakt.
Slide 18 - Tekstslide
Aan het werk
Maken 59, 65, 60, 66, 61, 67, 68, 69 + nakijken
timer
10:00
Slide 19 - Tekstslide
Slide 20 - Tekstslide
Slide 21 - Tekstslide
Slide 22 - Tekstslide
Slide 23 - Tekstslide
Aan het werk
Maken 59, 65, 60, 66, 61, 67, 68, 69 + nakijken
Slide 24 - Tekstslide
Huiswerk
Maken 61, 68, 69 + nakijken
Slide 25 - Tekstslide
Meer lessen zoals deze
Werkvormen: Taartpunten-puzzel
September 2021
- Les met
11 slides
door
LessonUp Inspiratie
Geschiedenis
Middelbare school
vmbo, mavo, havo, vwo
Leerjaar 3-6
LessonUp Inspiratie
Geschiedenis: Taartpunten-puzzel
September 2021
- Les met
11 slides
door
Geschiedenisleraar.nl
Geschiedenis
Middelbare school
vmbo, mavo, havo, vwo
Leerjaar 3-6
Geschiedenisleraar.nl
Werkvormen: Taartpunten-puzzel
April 2025
- Les met
11 slides
door
WoW! - Werkvormen in LessonUp
Geschiedenis
Middelbare school
vmbo, mavo, havo, vwo
Leerjaar 3-6
WoW! - Werkvormen in LessonUp
Lijnen en hoeken
April 2018
- Les met
19 slides
Wiskunde
Middelbare school
vmbo g, t, mavo
Leerjaar 1
Sleepvragen Wiskunde
September 2019
- Les met
19 slides
Wiskunde
Middelbare school
vmbo, mavo, havo, vwo
Leerjaar 1-4
Les 2: Ga verder met je karakter
May 2025
- Les met
19 slides
door
4TU.Schools
Informatica
Middelbare school
havo, vwo
Leerjaar 4,5
4TU.Schools
Enigma
April 2018
- Les met
1 slide
door
Geschiedenisleraar.nl
Geschiedenis
Middelbare school
mavo, havo
Leerjaar 2-4
Geschiedenisleraar.nl
Les 4. Stromingen binnen het Boeddhisme: Van Theravada tot Mahayana.
July 2024
- Les met
16 slides
Godsdienst
Levensbeschouwing
Middelbare school
havo, vwo
Leerjaar 4-6