8.3 Energievormen

Welkom!
1 / 32
volgende
Slide 1: Tekstslide
NatuurkundeMiddelbare schoolhavo, vwoLeerjaar 5

In deze les zitten 32 slides, met interactieve quizzen, tekstslides en 2 videos.

time-iconLesduur is: 45 min

Onderdelen in deze les

Welkom!

Slide 1 - Tekstslide

Vandaag
8.3 Energievormen

  • Huiswerk doorspreken (15 & 16)
  • Energievormen
  • Filmpje
  • Opgaven maken

  • Veerenergie: bewijs
  • Filmpje
  • Omzetting & Nut
  • Opgaven afmaken

Slide 2 - Tekstslide

Energievormen
  • Zwaarte-energie
  • Veerenergie
  • Warmte
  • Elektrische energie
  • Stralingsenergie
  • Chemische energie
  • Kinetische energie (bewegingsenergie)

Slide 3 - Tekstslide

Energievormen
  • Zwaarte-energie
  • Veerenergie
  • Warmte
  • Elektrische energie
  • Stralingsenergie
  • Chemische energie
  • Kinetische energie (bewegingsenergie)

Slide 4 - Tekstslide

Slide 5 - Video

Zwaarte energie
Zwaarte-energie is wat de zwaartekracht als arbeid kan gaan verichten. Elke energievorm die arbeid kan gaan verichten heet ook wel potentiële energie. 

Ezw=mgh

Slide 6 - Tekstslide

Energie overgieten

Slide 7 - Tekstslide

Veerenergie

Slide 8 - Tekstslide

Warmte
Warmte is het resultaat van de arbeid door wrijvingskracht. Als er een wrijvingskracht werkt ontstaat er warmte. 



Ook bij een chemische reactie (verbranding) en bij een verandering van gasdruk (fietspomp) kan warmte vrijkomen.
Ewr=Q=Fws

Slide 9 - Tekstslide

Electrisch


P is het electrisch vermogen in W.
W = J / s
Staat op het apparaat.

Ook makkelijk uit te rekenen door 




Slide 10 - Tekstslide

Straling

Slide 11 - Tekstslide

Chemische energie
Chemische energie is dus de energie die in brandstoffen zit en dat vrijkomt bij verbranding. Zie BINAS 28 B.
Voor vloeistoffen en gassen:

Voor vaste stoffen:

r is de stookwaarde per volume of massa...
Ech=rvV
Ech=rmm

Slide 12 - Tekstslide

Kinetische energie
Er kan ook energie in beweging zitten. Deze kan dan ook 'arbeid' leveren. 


Ekin=21mv2

Slide 13 - Tekstslide

Slide 14 - Video

nuttige energie
Als energie in brandstoffen zit, bijvoorbeeld benzine of eten, dan kan die chemische energie die daar in zit nooit volledig gebruikt worden. 

Enuttig=ηEchem=Fmotors

Slide 15 - Tekstslide

Overzicht
zwaarte energie Ezw=m•g•h
warmte Q=Fw•s
kinetische energie Ekin= 1/2•mv^2  
nuttige energie W=Fm•s of W=Fsp•s
Chemische energie Ech=Rv•V of Rm•m

Slide 16 - Tekstslide

Welke energie bereken je met onderstaande functie:

rvV
A
zwaarte energie
B
Warmte
C
Kinetische energie
D
Chemische energie

Slide 17 - Quizvraag

Welke energie bereken je met onderstaande functie:

mgh
A
zwaarte energie
B
Warmte
C
Kinetische energie
D
Chemische energie

Slide 18 - Quizvraag

Welke energie ontstaat er als er wrijvingskrachten mee doen?
A
zwaarte energie
B
Warmte
C
Kinetische energie
D
Chemische energie

Slide 19 - Quizvraag

voorbeeld
Energievormen kunnen dus uitgewisseld worden.  Zo krijgt iets als iets valt (zwaartekracht oefent positieve arbeid uit) uiteindelijk snelheid (kinetische energie).

Slide 20 - Tekstslide

Voorbeeld
Of andersom:
Als iets omhoog gegooid wordt (zwaartkracht vericht negatieve arbeid) verliest iets snelheid (kinetische energie).

Slide 21 - Tekstslide

Voorbeeld
Of andersom:
Als iets omhoog gegooid wordt (zwaartkracht vericht negatieve arbeid) verliest iets snelheid (kinetische energie).
Maar het krijgt dan weer potentiele energie. Omdat de hoogte toeneemt kan het weer steeds verder naar beneden vallen.

Slide 22 - Tekstslide

Voorbeeld
Een steentje (100 g) valt wrijvings naar 30 m beneden. 
Bereken met welke snelheid hij de grond raakt. 


Slide 23 - Tekstslide

Voorbeeld
Een steentje (100 g) valt wrijvings naar 30 m beneden. 
Bereken met welke snelheid hij de grond raakt. 
Zwaarte energie wordt omgezet in kinetische energie.


Slide 24 - Tekstslide

Voorbeeld
Een steentje (100 g) valt wrijvings naar 30 m beneden. 
Bereken met welke snelheid hij de grond raakt. 
Zwaarte energie wordt omgezet in kinetische energie.
Ezw=Ekin

Slide 25 - Tekstslide

Voorbeeld
Een steentje (100 g) valt wrijvingsloos naar 30 m beneden. 
Bereken met welke snelheid hij de grond raakt. 
Zwaarte energie wordt omgezet in kinetische energie.
Ezw=Ekin


mgh=21mv2

Slide 26 - Tekstslide

Voorbeeld
Een steentje (100 g) valt wrijvingsloos naar 30 m beneden. 
Bereken met welke snelheid hij de grond raakt. 
Zwaarte energie wordt omgezet in kinetische energie.
Ezw=Ekin


mgh=21mv2
v=2gh=29,8130=24ms1

Slide 27 - Tekstslide

Voorbeeld 2
Een balletje (40 g) rolt horizontaal met een beginsnelheid van 
12 m/s. De wrijvingskracht is 0,48 N.
Bereken na hoeveel m het balletje stil ligt.

Slide 28 - Tekstslide

Voorbeeld 2
Een balletje (40 g) rolt horizontaal met een beginsnelheid van 
12 m/s. De wrijvingskracht is 0,48 N.
Bereken na hoeveel m het balletje stil ligt.
De wrijvingskracht zorgt ervoor dat het balletje steeds minder hard rolt tot het stil ligt. De wrijvingskracht heeft dan evenveel arbeid vericht als er kinetische energie was.

Slide 29 - Tekstslide

Voorbeeld 2
Een balletje (40 g) rolt horizontaal met een beginsnelheid van 
12 m/s. De wrijvingskracht is 0,48 N.
Bereken na hoeveel m het balletje stil ligt.

Ekin=Q

Slide 30 - Tekstslide

Voorbeeld 2
Een balletje (40 g) rolt horizontaal met een beginsnelheid van 
12 m/s. De wrijvingskracht is 0,48 N.
Bereken na hoeveel m het balletje stil ligt.

21mv2=Fws
s=F(21mv2)=0,48(0,50,04122)=6,0m

Slide 31 - Tekstslide

Wat is nog niet (helemaal) duidelijk van de afgelopen les en wil je het graag nog een keer over hebben?

Slide 32 - Open vraag