Wat is LessonUp
Zoeken
Kanalen
aiToolsTab
Inloggen
Registreren
‹
Terug naar zoeken
13.1 Voorkennis Limieten
13.1 Voorkennis Limieten
1 / 26
volgende
Slide 1:
Tekstslide
Wiskunde
Middelbare school
vwo
Leerjaar 6
In deze les zitten
26 slides
, met
tekstslides
.
Lesduur is:
45 min
Start les
Bewaar
Deel
Printen
Onderdelen in deze les
13.1 Voorkennis Limieten
Slide 1 - Tekstslide
Limieten, wat zijn dat?
Uit 4V, hebben we niet gebruikt:
Slide 2 - Tekstslide
Wat is een limiet?
Verticale asymptoot
noemer=0
Horizontale asymptoot
?
f
(
x
)
=
x
1
Slide 3 - Tekstslide
Wat is een limiet?
Horizontale asymptoot
f
(
x
)
=
x
1
x
→
∞
lim
x
1
=
0
Slide 4 - Tekstslide
Wat is een limiet?
Dit is een standaardlimiet
x
→
∞
lim
x
1
=
0
Slide 5 - Tekstslide
Wat is een limiet?
Dit is een standaardlimiet
x
→
∞
lim
x
1
=
0
x
→
∞
lim
x
5
=
5
⋅
x
→
∞
lim
x
1
=
5
⋅
0
=
0
Slide 6 - Tekstslide
Wat is een limiet?
Dit is een standaardlimiet
x
→
∞
lim
x
1
=
0
x
→
∞
lim
x
2
1
=
0
Slide 7 - Tekstslide
Wat is een limiet?
Dit is een standaardlimiet
x
→
∞
lim
x
n
a
=
x
→
−
∞
lim
x
n
a
=
0
Slide 8 - Tekstslide
Wat is een limiet?
Horizontale asymptoot
g
(
x
)
=
x
2
+
3
2
x
2
−
5
x
x
→
∞
lim
x
2
+
3
2
x
2
−
5
x
Slide 9 - Tekstslide
x
→
∞
lim
x
2
+
3
2
x
2
−
5
x
=
Slide 10 - Tekstslide
x
→
∞
lim
1
+
x
2
3
2
−
x
5
=
x
→
∞
lim
x
2
+
3
2
x
2
−
5
x
=
Slide 11 - Tekstslide
x
→
∞
lim
1
+
x
2
3
2
−
x
5
=
x
→
∞
lim
x
2
+
3
2
x
2
−
5
x
=
x
→
∞
lim
1
+
x
2
3
2
−
x
5
=
1
2
=
2
Later meer hierover!
Slide 12 - Tekstslide
De limiet en de afgeleide:
De afgeleide geeft je de snelheid van een functie op een bepaald punt.
Hoewel...
Slide 13 - Tekstslide
Differentiequotiënt bij een formule
Bereken het differentiequotiënt op het interval
f
(
x
)
=
x
2
−
5
x
+
6
[
−
1
,
2
]
Slide 14 - Tekstslide
Snelheid op één moment
Benader de helling in het punt
gebruik
f
(
x
)
=
x
2
−
5
x
+
6
x
=
1
Δ
x
=
0
,
0
1
Slide 15 - Tekstslide
Snelheid op één moment
Benader de helling in het punt
gebruik
f
(
x
)
=
x
2
−
5
x
+
6
x
=
1
Δ
x
=
0
,
0
1
d
x
d
y
=
0
,
0
1
f
(
a
+
0
,
0
1
)
−
f
(
a
)
Slide 16 - Tekstslide
Snelheid op één moment
Benader de helling in het punt
gebruik
f
(
x
)
=
x
2
−
5
x
+
6
x
=
1
Δ
x
=
0
,
0
1
d
x
d
y
=
0
,
0
1
f
(
1
,
0
1
)
−
f
(
1
)
=
0
,
0
1
1
,
9
7
0
1
−
2
Slide 17 - Tekstslide
Snelheid op één moment
Benader de helling in het punt
gebruik
f
(
x
)
=
x
2
−
5
x
+
6
x
=
1
Δ
x
=
0
,
0
1
d
x
d
y
=
0
,
0
1
f
(
1
,
0
1
)
−
f
(
1
)
=
0
,
0
1
1
,
9
7
0
1
−
2
=
−
2
,
9
9
Slide 18 - Tekstslide
Dit kan ook met een functie!
f
(
x
)
=
3
x
2
+
2
x
Slide 19 - Tekstslide
Dit kan ook met een functie!
f
(
x
)
=
3
x
2
+
2
x
f
′
(
x
)
=
h
→
0
lim
h
3
(
x
+
h
)
2
+
2
(
x
+
h
)
−
(
3
x
2
+
2
x
)
Slide 20 - Tekstslide
Dit kan ook met een functie!
Werk de haakjes eens uit
f
′
(
x
)
=
h
→
0
lim
h
3
(
x
+
h
)
2
+
2
(
x
+
h
)
−
(
3
x
2
+
2
x
)
Slide 21 - Tekstslide
Dit kan ook met een functie!
Werk de haakjes eens uit
f
′
(
x
)
=
h
→
0
lim
h
3
(
x
+
h
)
2
+
2
(
x
+
h
)
−
(
3
x
2
+
2
x
)
f
′
(
x
)
=
h
→
0
lim
h
3
x
2
+
6
h
x
+
3
h
2
+
2
x
+
2
h
−
3
x
2
−
2
x
Slide 22 - Tekstslide
Dit kan ook met een functie!
Werk de haakjes eens uit
f
′
(
x
)
=
h
→
0
lim
h
3
(
x
+
h
)
2
+
2
(
x
+
h
)
−
(
3
x
2
+
2
x
)
f
′
(
x
)
=
h
→
0
lim
h
3
x
2
+
6
h
x
+
3
h
2
+
2
x
+
2
h
−
3
x
2
−
2
x
f
′
(
x
)
=
h
→
0
lim
h
6
h
x
+
3
h
2
+
2
h
Slide 23 - Tekstslide
Dit kan ook met een functie!
Werk de haakjes eens uit
f
′
(
x
)
=
h
→
0
lim
h
3
(
x
+
h
)
2
+
2
(
x
+
h
)
−
(
3
x
2
+
2
x
)
f
′
(
x
)
=
h
→
0
lim
h
3
x
2
+
6
h
x
+
3
h
2
+
2
x
+
2
h
−
3
x
2
−
2
x
f
′
(
x
)
=
h
→
0
lim
h
6
h
x
+
3
h
2
+
2
h
=
f
′
(
x
)
=
h
→
0
lim
6
x
+
3
h
+
2
Slide 24 - Tekstslide
Dit kan ook met een functie!
Nu mag je invullen h=0
f
′
(
x
)
=
h
→
0
lim
6
x
+
3
h
+
2
6
x
+
3
⋅
0
+
2
=
6
x
+
2
Slide 25 - Tekstslide
Dit kan ook met een functie!
Dit hebben we nu bewezen met de limiet
f
(
x
)
=
3
x
2
+
2
x
f
′
(
x
)
=
6
x
+
2
Slide 26 - Tekstslide
Meer lessen zoals deze
Multitasken en je denkbrein
September 2022
- Les met
28 slides
door
De InternetHelden
Mediawijsheid
Burgerschapsonderwijs
+1
Middelbare school
vmbo, mavo, havo, vwo
Leerjaar 1-3
De InternetHelden
Wld: Motivatie Afleiders Beter resultaat
December 2018
- Les met
34 slides
Mentorles
Middelbare school
vmbo k, g, t, mavo
Leerjaar 1
13.1 Het centrale zenuwstelsel
June 2022
- Les met
59 slides
Biologie
Middelbare school
vwo
Leerjaar 5
Werkvormen: Beeld vertalen
April 2025
- Les met
8 slides
door
WoW! - Werkvormen in LessonUp
Maatschappijleer
Mens & Maatschappij
+14
Basisschool
Middelbare school
Praktijkonderwijs
Speciaal Onderwijs
Voortgezet speciaal onderwijs
MBO
HBO
Beroepsopleiding
ISK
vmbo, mavo, havo, vwo
Leerroute 1
Leerroute 2
Leerroute 3
Leerroute 4
Leerroute 5
Leerroute 6
Leerroute 7
Leerroute H
Leerroute M
Leerroute V
Leerroute VB
Leerroute VG
Leerroute VK
Leerroute VL
Leerroute VT
Leerroute a1
Leerroute a2
Leerroute alfa-c
Leerroute b1
Leerroute b2
Leerroute n1
Leerroute n2
Leerroute n3
Leerroute n4
Groep 1-8
Leerjaar 1-6
Studiejaar 1-4
WoW! - Werkvormen in LessonUp
Werkvormen: Beeld vertalen
February 2025
- Les met
8 slides
door
LessonUp Inspiratie
Maatschappijleer
Mens & Maatschappij
+14
Basisschool
Middelbare school
Praktijkonderwijs
Speciaal Onderwijs
Voortgezet speciaal onderwijs
MBO
HBO
Beroepsopleiding
ISK
vmbo, mavo, havo, vwo
Leerroute 1
Leerroute 2
Leerroute 3
Leerroute 4
Leerroute 5
Leerroute 6
Leerroute 7
Leerroute H
Leerroute M
Leerroute V
Leerroute VB
Leerroute VG
Leerroute VK
Leerroute VL
Leerroute VT
Leerroute a1
Leerroute a2
Leerroute alfa-c
Leerroute b1
Leerroute b2
Leerroute n1
Leerroute n2
Leerroute n3
Leerroute n4
Groep 1-8
Leerjaar 1-6
Studiejaar 1-4
LessonUp Inspiratie
13.1 + 13.2 Afronding
June 2022
- Les met
17 slides
Biologie
Middelbare school
vwo
Leerjaar 5
10.1 - Formules korter maken
April 2022
- Les met
9 slides
Wiskunde
Middelbare school
havo
Leerjaar 1,2
Berlin, the movie [History]
May 2019
- Les met
6 slides
door
Dé Schoolreisgids
Frans
Middelbare school
vmbo, mavo, havo, vwo
Leerjaar 1-6
Dé Schoolreisgids